Inhibition of proliferation of rabbit lens epithelial cells by S-phase kinase-interacting protein 2 targeting small interfering RNA
نویسندگان
چکیده
PURPOSE Improper proliferation of lens epithelial cells is causally related to posterior capsule opacification. In the present study, we investigated whether small interfering RNA (siRNA)-mediated gene silencing of S-phase kinase-interacting protein 2 (Skp2) can be employed to inhibit rabbit lens epithelial cell (rLEC) proliferation by increasing the p27(kip1) level. METHODS A plasmid containing Skp2 siRNA was used to decrease the high constitutive level of Skp2 protein in rLECs, which can lead to consequent degradation of p27(kip1). Protein expression of Skp2 and p27(kip1) was detected by immunocytochemistry and western blot. Cell viability was measured using the tetrazolium reduction (3-(4,5-dimethylthiazolyl-2-)-2,5-diphenyltetrazoliumbromide [MTT]) assay. Cell proliferation was assayed by cell counts, immunocytochemistry, and western blot by using antibodies against proliferating cell nuclear antigen. RESULTS Immunocytochemistry and western blot showed a decreased level of Skp2 and increased level of p27(kip1) in cells transfected with pSkp2 siRNA but not in vehicle transfection and uninfected cells. MTT assay showed that cell viability significantly declined in rLECs transfected with Skp2 siRNA. Skp2 siRNA transfected cells showed significantly less 59-bromodeoxyuridine- and proliferating cell nuclear antigen-positive staining compared with control cells. CONCLUSIONS Skp2 siRNA inhibits cell proliferation and decreases cell viability of rLECs in vitro by suppression of p27(kip1) downregulation. Our findings suggest that siRNA-mediated gene silencing of Skp2 can be a novel gene therapy for posterior capsule opacification induced by LEC abnormal proliferation.
منابع مشابه
Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell growth of oral cancer cells by inhibiting p27 degradation.
S phase kinase-interacting protein 2 (Skp2), an F box protein, is required for the ubiquitination and consequent degradation of p27. It is well known that reduced expression of p27 is frequently observed in various cancers including oral squamous cell carcinoma and is due to an enhancement of its protein degradation. Our previous study showed that overexpression of Skp2 was frequently found in ...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملDownregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملSiRNA Targeting mTOR Effectively Prevents the Proliferation and Migration of Human Lens Epithelial Cells
Posterior capsule opacification (PCO) is the most common complication that causes visual decrease after extracapsular cataract surgery. The primary cause of PCO formation is the proliferation of the residual lens epithelial cells (LECs). The mammalian target of rapamycin (mTOR) plays an important role in the growth and migration of LECs. In the current study, we used small interfering RNA (siRN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2010